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Abstract

Symptoms are common in patients on maintenance hemodialysis but identification is challenging. 

New informatics approaches including natural language processing (NLP) can be utilized to 

identify symptoms from narrative clinical documentation. Here we utilized NLP to identify seven 

patient symptoms from notes of maintenance hemodialysis patients of the BioMe Biobank and 

validated our findings using a separate cohort and the MIMIC-III database. NLP performance was 

compared for symptom detection with International Classification of Diseases (ICD)-9/10 codes 

and the performance of both methods were validated against manual chart review. From 1034 and 

519 hemodialysis patients within BioMe and MIMIC-III databases, respectively, the most 

frequently identified symptoms by NLP were fatigue, pain, and nausea/vomiting. In BioMe, 

sensitivity for NLP (0.85 – 0.99) was higher than for ICD codes (0.09 – 0.59) for all symptoms 

with similar results in the BioMe validation cohort and MIMIC-III. ICD codes were significantly 

more specific for nausea/vomiting in BioMe and more specific for fatigue, depression, and pain in 
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the MIMIC-III database. A majority of patients in both cohorts had four or more symptoms. 

Patients with more symptoms identified by NLP, ICD, and chart review had more clinical 

encounters. NLP had higher specificity in inpatient notes but higher sensitivity in outpatient notes 

and performed similarly across pain severity subgroups. Thus, NLP had higher sensitivity 

compared to ICD codes for identification of seven common hemodialysis-related symptoms, with 

comparable specificity between the two methods. Hence, NLP may be useful for the high-

throughput identification of patient-centered outcomes when using electronic health records.
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Introduction:

There are over 450,000 patients on maintenance hemodialysis (HD) in the United States.1 

Symptom burden is high in HD patients and patients on average report a median of nine 

symptoms over a week.2 The Standardized Outcomes in Nephrology (SONG)-HD, has 

identified outcomes that are important to physicians and patients.3 While cardiovascular 

disease and mortality outcomes are easily tracked and identified, symptoms are difficult to 

identify and usually require prospective survey of patients or manual chart review which are 

time consuming (many surveys being over 30 questions), and only provides a cross sectional 

view.4,5

Electronic health records (EHRs) have been widely implemented in most hospital systems 

and dialysis units.6 At each HD session, patients are regularly observed for adverse signs 

and symptoms by nurses, technicians, and physicians. These encounters are documented in 

EHRs as “free text” and infrequently as structured data.7 Natural language processing (NLP) 

allows for the ‘reading’ of unstructured documentation and converts it into discrete data for 

analysis. We sought to determine the ability of NLP to identify fatigue, nausea and/or 

vomiting(N/V), anxiety, depression, itching, cramps, and pain from the EHR of HD patients. 

We then compared the performance of NLP and ICD against manual chart review.

Results:

Patient Characteristics:

We identified 1080 patients receiving maintenance HD from BioMe (Figure S1 A). 46 of 

these patients who enrolled after 2017 served as a separate validation dataset. Patients had a 
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mean age of 64±13 years, 42% were women, and 42% self-reported as African American. 

There was a high prevalence of diabetes (65%), hypertension (88%), coronary artery disease 

(40%), and congestive heart failure (32%) (Table 1). The median number of encounters was 

109, (interquartile range (IQR) 41–241), progress notes were 342 (IQR 102–782) and 

discharge summaries were 16 (IQR 2–54). The mean follow up time was 8.7±5.5 years 

(Table 1). From MIMIC-III, we identified 519 chronic HD patients utilizing ICD-9 codes 

(Figure S1 B). The mean age of patients was 70 ± 39.6 years, 41% of patients were women, 

and 63% self-reported as white. Prevalence of co-morbidities were high, diabetes (54%), 

hypertension (91%), coronary artery disease (46%), and congestive heart failure (47%) 

(Table 1). Median progress note count was 10 (IQR 0–55) and median discharge summary 

count was 1 (IQR 1–2). As a majority of patients only had 1 encounter, follow up time could 

not be calculated.

Symptom Identification using NLP vs Administrative Codes:

In the BioMe development cohort, NLP identified symptoms more frequently than did ICD 

codes (Figure 1 A). The most frequent symptoms identified were pain (NLP 93% vs. ICD 

46%, P<0.001), fatigue (NLP 84% vs. ICD 41%, P<0.001), and N/V (NLP 74% vs. ICD 

19%, P<0.001). Symptoms were most frequently identified from progress notes (39%−84%) 

and discharge summaries (14%−33%). When normalized by number of encounters and 

follow up time in the BioMe development cohort, the mean frequency of symptoms were 

0.8, 0.5, 0.5, 0.4, 0.1, 0.07, and 0.003 encounters/year for pain, fatigue, depression, itching, 

anxiety, N/V, and for cramping, respectively. In the BioMe validation cohort, the mean 

frequency of symptoms were 0.1, 0.02, 0.01, 0.01, 0.006, 0.003, 0.001 encounter/year for 

pain, depression, fatigue, anxiety, N/V, itching, and cramping, respectively.

In MIMIC-III, the most common symptoms by NLP were pain (NLP 94% vs. ICD 6%, 

P=0.15), fatigue (NLP 62% vs. ICD 1%, P=0.05), and N/V(NLP 56% vs. 3%, P =0.003) 

(Figure 1 B).. Depression, anxiety, and pain were the most common symptoms by ICD 

codes (all 6%).

Manual Chart Validation of 50 Randomly Selected Charts:

In the BioMe development cohort, agreement across investigators for chart review was high 

(kappa statistic 0.6–1). Frequency of symptoms identified by NLP+ICD+manual review was 

4%−54%, for NLP+manual review was 16%−54%, and ICD+manual review was 0–2% 

(Figure 2). Sensitivity for NLP ranged from 0.85 (95% CI 0.65–96) for depression to 0.99 

(95% CI 0.93–1) for fatigue while sensitivity for ICD ranged from 0.09 (95% CI 0.01–0.29) 

for cramps to 0.59 (95% CI 0.43–0.73) for fatigue. Specificity for NLP ranged from 0.5 

(95% CI 0–1) for pain to 0.96 (95% CI 0.8–1) for itching, while specificity for ICD ranged 

from 0.5 (95% CI 0.37–0.66) for pain to 0.98 (95% CI 0.86–1) for itching (Figure 3 A and 

Table S1 A). ICD codes were significantly more specific for N/V(NLP 0.57 (95% CI 0.29–

0.82) vs. ICD 0.97 (95% CI 0.77–1), P=0.03). F1 scores for NLP ranged from 0.82 to 0.99 

and were significantly higher than ICD for all symptoms (0.28 – 0.83). The addition of 

medications to ICD codes for identification of N/V, anxiety, depression and pain improved 

sensitivity of ICD alone however worsened specificity (Figure S2 A).
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In the BioMe validation cohort, the sensitivity for NLP ranged from 0.78 (95% CI 0.52–

0.94) for depression to 0.99 (95% CI 0.92–1) for fatigue while sensitivity of ICD ranged 

from 0.13 (95% CI 0.02–0.27) for cramp to 0.71 (95% CI 0.56–0.85) for fatigue. (Table S1 

B).

Twenty-five patients were identified to have undergone PHQ-9 depression screening, of 

which 24 patients were identified to have depression PHQ-9 and/or clinical history. NLP 

correctly identified 22 (92%) patients while ICD 9/10 identified 20 (83%) patients. In 

MIMIC-III, sensitivity for NLP ranged from 0.5 for cramp to 0.98 (95% CI 0.86–1) for 

fatigue while sensitivity for ICD ranged from 0.04 (95% CI, 0–0.21) for fatigue to 0.5 (95% 

CI N/A) for cramp (Figure 2 B and Table S1 C). Specificity for NLP ranged from 0.11 (95% 

CI 0–0.48) for pain to 0.98 (95% CI 0.89–1) for itching, while for ICD it was 0.95 (95% CI 

0.66–1) for pain to 0.99 (95% CI 0.93–1) for itching. ICD had significantly higher 

specificity for fatigue (NLP 0.77 (95% CI 0.56–0.91) vs ICD 0.98 (95% CI 0.87–1), 

P=0.03), depression (NLP 0.81 (95% CI 0.64–0.92) vs. ICD 0.99 (95% CI 0.9–1), P=0.02), 

and pain (NLP 0.11 (95% CI 0–0.48) vs. ICD 0.95 (95% CI 0.66–1), P<0.001) in MIMIC-

III.

Symptom Burden

In BioMe, NLP identified 44 (4%) patients, 61 (6%) patients, 87 (8%) patients, 99 (10%) 

patients, 177 (17%) patients, 158 (15%) patients, 204 (20%) patients, and 204 (20%) 

patients with 0,1,2,3,4,5,6, and 7 symptoms respectively. Patients who did not have any 

symptoms identified by NLP had a median of 7 (IQR 2–40) encounters/year, while patients 

with all 7 symptoms had a median of 24 (IQR 15–43) encounters/year. There was a 

moderate correlation between the number of encounters/year and the number symptoms 

identified by NLP (correlation coefficient 0.36, P<0.001). Within the 50 patients that had 

manual chart review, symptom burden identified by NLP and manual chart review was 

similar, however patients had less symptoms by ICD codes than manual chart review (Figure 

4 A, B, C). There was a moderate significant positive correlation between number of 

encounters per year and number of symptoms identified by NLP (correlation coefficient 0.5, 

P<0.001), ICD (correlation coefficient 0.35, P=0.01), and manual chart review (correlation 

coefficient 0.5, P<0.001) in BioMe. In MIMIC-III, NLP identified 21 (4%) patients, 51 

(10%) patients, 136 (26%) patients, 122 (24%) patients, 98 (19%) patients, 65 (13%) 

patients, 21 (4%) patients, and 5 (1%) patients with 0,1,2,3,4,5,6, and 7 symptoms 

respectively.

Subgroup Analysis in BioMe:

608 participants had at least 2 years of follow up time. When restricted to only 1 year of 

notes, NLP identified symptoms less frequently than without date restrictions (fatigue 58% 

vs. 84%, N/V39% vs. 74%, anxiety 26% vs. 54%, depression 18% vs. 55%, itching 22% vs. 

48%, and cramp 16% vs. 44%) except for pain which was found at a similar rate (90% in 1 

year subset vs. 93% no restrictions) (Figure S3). Even with date restrictions, NLP identified 

more symptoms and had better sensitivity than ICD codes (Table S1 D).
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1024 participants had at least 1 encounter with notes available, these patients were then 

grouped into tertiles (low (≤62 encounters), medium (63–186 encounters), and high (≥187 

encounters)) based on the number of encounters. An increasing number of symptoms were 

identified using NLP and ICD with increasing encounters for all symptoms except for pain. 

There was no substantial increase in identification of pain with NLP between medium and 

high encounter groups. Regardless of symptom and encounter group, NLP identified more 

symptoms than ICD did (Figure S4).

Out of 100,118 notes, 11,066 (11%) of notes were from an inpatient hospital stay. 

Symptoms were identified more frequently in outpatient notes than inpatient notes except for 

N/V. Fatigue identification had the largest difference by inpatient and outpatient notes, with 

a difference of 19% (Figure S5). Overall, NLP had better sensitivity for symptom 

identification in outpatient notes but better specificity in inpatient notes (Figure S2 B).

A total of 533 (52%) patients had 7,476 episodes of pain with severity documented; 3,137 

(42%) were mild, 2,232 (30%) were moderate, and 2,107 (28%) were severe. NLP 

performed similarly across pain severity types (Figure S2 C).

Discussion:

Although symptoms are common in HD patients and are identified as important to patients 

and providers, efficient retrospective assessment of symptoms from EHR is difficult. We 

show that NLP has better sensitivity than ICD codes at identifying seven common symptoms 

in patients from the BioMe Biobank with validation of results in a separate validation cohort 

from BioMe and an external cohort from MIMIC-III.3 The symptom burden was high, with 

a majority of patients having at least 4 or more symptoms identified by NLP. Finally, there 

was a positive correlation between number of encounters and number of symptoms 

identified by NLP.

The SONG-HD initiative identified several outcomes important to all stakeholders and has 

emphasized the importance of clinical research that includes these symptoms. Prior research 

that employed patient-centered outcomes as endpoints have required prospective surveys for 

their execution.2,8 Alternatives to this approach include chart validation potentially with aid 

of computer text searching and chart review tools. However, these methods are labor and 

time intensive. While NLP can process notes in an efficient manner, there are few studies in 

nephrology that have utilized NLP and included symptoms or patient-centered outcomes.
9–14

Symptom prevalence identified in the BioMe cohort by NLP is similar to prior published 

survey data on symptoms.2,8,16 Symptoms such as itching and cramps were less frequent, 

while other symptoms such as N/V were found more commonly. Differences in patients 

enrolled in studies and those seen in real world practice likely contributes to the differences 

in prevalence. Additionally, the ethnically and racially diverse nature of the BioMe Biobank 

and the critically ill nature of MIMIC-III patients are likely contributors to differences in 

symptom prevalence. How the prevalence of symptoms identified here compares to the 

general outpatient U.S. HD population needs to be further elucidated.
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While surveys done in prior studies have been in patients who are stable at their outpatient 

hemodialysis centers, we included outpatient and acute in-patient notes. On subgroup 

analysis, we found that more symptoms were picked up in the outpatient notes than the 

inpatient notes. The larger proportion of notes for outpatient encounters likely contributes to 

the higher sensitivity in outpatient notes. Additionally providers are more likely to discuss 

overall health in the outpatient setting when the patient is not acutely ill, while in the 

inpatient notes providers will focus on the admitting diagnosis. As MIMIC-III consists of 

progress notes from critically ill patients, symptoms were identified at an even lower rate. 

This is likely related to the patients being critically ill and unable to verbalize their 

symptoms along with the providers focus on admission diagnosis and contributing 

comorbidities instead of symptoms and psychosocial comorbidities.

We chose not to place limitations on the number, timing, or type of notes, which may have 

increased the likelihood of NLP or ICD codes identifying a symptom. However, in 

sensitivity analysis, NLP consistently identified more symptoms than ICD codes. While the 

false positives may be contributing to this difference, we suspect this is a small contributor 

given relatively small differences in specificity between NLP and ICD. Additionally, the lack 

of note restrictions may lead to identification of symptoms that are not caused by patient’s 

ESRD status. However, these symptoms remain important patient outcomes as they were 

deemed to be important to patients, physicians, and caregivers.3

We found that NLP out performed ICD codes for symptom identification.17–20 As ICD 

codes are administrative and billing codes clinicians may be less inclined to use them to 

document symptoms experienced by HD patients, especially if they do not count towards 

overall reimbursement. Sensitivity for ICD codes are generally moderate even in more 

common conditions such as myocardial infarction (72%) and hypertension (78%).21 The 

addition of medications to ICD codes for identification of N/V, anxiety, depression, and pain 

increased sensitivity but decreased specificity likely due to the use of medications for other 

indications (e.g. bupropion for depression and also for smoking cessation).

ICD codes for symptoms had high specificity and high PPV. Therefore, the NLP method 

may be favored for identification of a large cohort of patients with symptoms accepting the 

risk of higher false positives while the ICD method may be favored for identification of 

patients highly likely to have symptoms accepting the higher false negative rate. While NLP 

was more sensitive at identifying depression, ICD codes were more specific. This was due to 

false positives for depression used in other clinical contexts (e.g. depressions on 

electrocardiogram or temporal depressions). While we could potentially improve the 

specificity of NLP for depression by excluding specific phrases found during chart review 

this is likely to reduce the generalizability of NLP for external cohorts due to variability in 

provider documentation across institutions.

Our study should be interpreted in the light of some limitations including the dependence of 

symptom identification on the number of encounters and notes available. However, this is a 

common issue with EHR systems, where both sicker patients as well as patients with longer 

length of follow up have more data.22 Unfortunately, data regarding the author of the note is 

not available and we cannot comment on the documentation of symptoms by provider type. 
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Additionally, only symptoms which the provider is screening for are documented and 

therefore NLP may miss those symptoms patients are not discussing with their providers 

which may lead to an underestimation of symptom prevalence.23 Neither the BioMe nor 

MIMIC-III datasets are exclusive to outpatient HD patients, which make comparison with 

prior published data difficult and reduce the generalizability of our results. However, the 

prevalence of symptoms in our study is similar to prior published survey data.2,16 Data is 

extracted from EHR of respective institutions, and this export process may affect the 

generalizability of results to other institutions. While presence of symptoms varied 

throughout time, we chose to classify patients as ever present or never present as our goal 

was to evaluate the performance of NLP for identifying patients with the symptoms. In our 

subgroup analyses of one year of notes, we looked only at the date of the note and not 

whether the query was flagged as a current or past temporal context, which may change the 

frequency of symptoms identified. Unfortunately, as we did not have concurrent survey data 

available, we used manual chart review as our gold standard which may be imperfect., The 

results of our test statistics were relatively consistent across BioMe and MIMIC-III cohorts, 

suggesting that our NLP algorithm could have generalizability across different medical 

systems. Unfortunately, we did not perform formal error analysis but further work on NLP 

methods could benefit from formal error analysis.

In conclusion, we utilized NLP to identify important patient symptoms from EHR of HD 

patients from the Mount Sinai health system and validated our results in MIMIC-III. NLP 

out performed ICD codes for identification in regards to sensitivity, negative predictive value 

(NPV), and F1 score for a majority of symptoms in both the cohorts. Additional refinement 

of NLP approaches and testing in the EHR of outpatient HD units is needed to further 

validate our findings and to utilize NLP approaches in the care of our patients.

Methods:

Study Population

From a cohort of 38,575 participants from the BioMe Biobank at Mount Sinai, we retrieved 

all notes of BioMe participants available from a centralized data mart from January 1, 2010 

up to March 15, 2019. The BioMe Biobank is a prospective registry of patients from the 

Mount Sinai Healthcare System linked to the United States Renal Data System (USRDS). 

We included patients on HD excluding those with a kidney transplant and never on dialysis. 

As linkage information did not include dialysis type or dialysis access type, peritoneal (PD) 

patients were excluded using ICD codes as PD. (Table S2 A). The NLP development cohort 

included only patients who enrolled in BioMe prior to December 31,2017. The institutional 

review board approved the BioMe protocols and informed consent was obtained for all 

subjects.

We validated performance of our NLP algorithm using two distinct cohorts (1) BioMe 
validation cohort comprised of chronic HD patients from BioMe that were not included in 

the original development cohort and (2) the Medical Information Mart for Intensive Care 

(MIMIC-III) database.24 The BioMe validation cohort were patients who enrolled in BioMe 
between January 1, 2018 and March 15, 2019 and were identified using ICD 9/10 codes 

(Table S2 A). MIMIC-III is a critical care database of patients from a large, single center 
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tertiary care hospital from 2001–12.24 We included all notes from the MIMIC–III database. 

Since MIMIC-III could not be linked with USRDS, ESKD was identified as patients who 

had an ESKD code and a code for dialysis procedure or diagnosis after excluding patients 

with acute kidney injury codes and PD patients by PD procedure codes (Table S2 A). As 

MIMIC-III is a de-identified publically available database, evaluation of data from this 

source was considered IRB exempt.

Patient comorbidities were identified utilizing the Clinical Classification Software (CCS) 

developed by the Healthcare Cost and Utilization Project.25 The CCS aggregates ICD codes 

into clinically meaningful and mutually exclusive categories. The codes used for 

identification are included in Table S2 B.

Study Design

This is a retrospective cohort study of HD patients drawn from the EHR from two medical 

systems. We utilized the CLiX NLP engine produced by Clinithink (London, UK) to parse 

notes. CLiX NLP is a NLP software that matches free text to Systematized Nomenclature of 

Medicine - - Clinical Terms (SNOMED CT).26 SNOMED CT is a comprehensive healthcare 

terminology resource that has an inherent hierarchy consisting of overarching concepts, i.e. 

parent terms, which encompass more specific concepts, i.e., children terms. Figure S6 

includes an example of how “cramp” would be represented in the SNOMED CT hierarchy. 

In our testing for this and other projects we found that CLiX NLP was able to handle 

typographical errors, sentence context, and negation well.27,28 Common abbreviations (e.g. 

N/V for nausea and/or vomiting) were correctly identified; however during chart review 

additional abbreviations that were incorrectly identified required a request to alter the NLP 

algorithm. CLiX NLP identifies terms such as “no”, “denies”, “not” as negative and applies 

it to the SNOMED CT thereby marking the query as “present” or “absent”. Therefore, we 

did not use specific negative terms for exclusion, instead only those marked as “present” 

were considered as positive. There was no restriction on number of notes or types of notes 

placed. Note types included progress notes (from all providers including social worker, 

physical therapy, nursing, and physician), radiology reports, discharge summaries, and 

pathology reports.

We queried for fatigue, depression, pain, N/V, anxiety, and cramps3. SNOMED CT for the 

associated outcomes were selected through extensive review by two physicians (Table S3). 

These specific terms were selected due to their inability to be identified from structured data.

We used a SNOMED CT query engine (a second component of CLiX) to perform 

hierarchical subsumption queries to identify all relevant SNOMED CT, both parent terms 

and the associated children terms for each outcome. This was first identified on the 

document level and then on the patient level. For depression, a chronic disease, NLP 

identification on at least two different dates was necessary to be considered positive; for all 

other symptoms identification on one note was considered positive. CLiX NLP reads 

through each sentence to identify all associated SNOMED CT. Then CLiX NLP’s inherent 

description logic outputs details associated with each term including subject, temporality, 

present vs. absence, and if appropriate location/laterality (Figure S7). A query was 

considered positive if the subject was identified as the subject of record and it had a known 
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present context. Date of query positive was date of the note. While CLiX NLP is a 

proprietary system, this study can be replicated with other NLP tools that utilize SNOMED 

CT. We chose this NLP method due to the research teams’ familiarity with it and availability 

to us. Other valid methods, including machine learning, were not used due to lack of mature 

methodologies for this specific project.

We performed two iterations of NLP parsing with manual chart review of 50 randomly 

selected charts, a test set, guiding the second iteration. We rectified errors in identification in 

the NLP engine prior to the execution of the final parsing. Examples included phrases such 

as “The patient was advised to call for any fever or for prolonged or severe pain or bleeding” 

and “EKG sinus tach with V4, V5 depressions”. We modified the NLP algorithm to 

recognize these as negative expressions. We report results in this manuscript from the final 

NLP query with test statistics calculated from a separate manual chart review of 50 

randomly selected charts as described below. Examples of false positives that were identified 

during this final chart review are presented in Table S4. This final NLP algorithm was then 

validated in 46 distinct HD patients from BioMe and MIMIC-III.

We compared performance of ICD-CM codes with the results obtained from CLiX NLP. 
29–31 ICD-9 and 10 codes were used in BioMe while only ICD-9 codes were available in 

MIMIC-III (Table S2 C). To determine if medication data improved ICD identification of 

symptoms, we identified medications used for pain, N/V, anxiety, and depression from 

RxNorm (Table S5) and identified patients who were ever prescribed these medications.32 

Medications which are commonly used for other indications (e.g. aspirin for 2nd prevention 

of cardiac events) was removed from the list. Finally, both methods were compared with 

independent chart review by two physicians. We randomly selected 50 patient charts from 

BioMe and MIMIC-III, using SAS (PROC SURVEY SELECT method SRS) to perform 

simple random sampling. Then all notes from the same 50 charts were reviewed for all 

symptoms. All patients from the BioMe validation cohort underwent manual chart review. 

When there was disagreement between manual validations for a patient, joint review of the 

patient’s chart was performed until consensus agreement was obtained.

To evaluate NLP performance across note types, notes were categorized into inpatient or 

outpatient. Manual chart review of 50 randomly selected charts was performed. Next, we 

looked at symptom identification within progress notes, discharge summaries, pathology 

reports and radiology reports. For pain, we extracted severity and categorized it into mild, 

moderate, and severe. Manual chart review of 25 randomly selected cases for each severity 

and 25 randomly controls (those with pain but no severity identified) was performed.

Two additional subgroup analyses were performed using data from BioMe patients. First, we 

restricted NLP to only one year of notes from patients who had at least two years of data. 

Manual chart review was done on 30 patients. Second, only patients with at least 1 encounter 

with notes available were included and grouped into tertiles basded on the number of 

encounters (low, medium, and high). Unfortunately, the MIMIC-III database was solely an 

ICU database and therefore lacks the repeated encounters and longitudinal follow up that is 

available in BioMe, therefore these subgroup analyses could not be performed.
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Lastly, we compared NLP depression positive with Patient Health Questionnaire 9 (PHQ-9) 

screening documentation33,34 We considered depression screening positive if patients scored 

≥10 or there was evidence of history of depression (i.e. cognitive behavior therapy, anti-

depressive medications, or prior suicide attempts).

Statistical Analysis:

We calculated sensitivity, specificity, positive predictive value (PPV), negative predictive 

value (NPV), and F1 scores of NLP and ICD9/10 codes. F1 scores were calculated as a 

measure of accuracy that considers both the sensitivity and PPV.35 For cells on the 2×2 table 

where the value was 0, we adapted the Woolf-Haldane correction method for logistic 

regression and entered 0.5 to allow for calculation of test statistics.36,37 95% CI were 

calculated using the PROC FREQ procedure in SAS using the binomial option.38 We 

compared estimates of sensitivity, specificity using the McNemar’s test with significance set 

using a two sided p value of <0.05. We compared NPV and PPV using the generalized score 

statistic method and the SAS macro created by Gondara et al.39 Unfortunately 95% CI and P 

values could not be generated if 2 or more cells in the 2×2 table were empty. We calculated 

Pearson correlation coefficient to determine the correlation between number of encounters 

and number of symptoms identified by NLP. We performed all analysis using SAS version 

9.4 (SAS Institute, Cary NC) and R 3.6.0 (R Foundation for Statistical Computing, Vienna, 

Austria).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Frequency of symptom identified by NLP and ICD from (A) BioMe and (B) MIMIC-III. 

Blue bar indicates percentage of patients where symptom was found only by NLP, green bar 

indicates percentage of patients where symptom was found by only by ICD, red bar 

indicates percentage of patients where symptom was found by both NLP and ICD, while 

purple bar indicates percentage of patients where the symptom was found by neither NLP or 

ICD
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Figure 2: 
Frequency of symptoms from 50 patients from A) BioMe and B) MIMIC-III who had 

manual chart review.
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Figure 3: 
Sensitivity, specificity, PPV, NPV, and F1 score of NLP vs. ICD for identification of 

symptoms for A) BioMe and B) MIMIC-III calculated using manual chart review of 50 

patient charts
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Figure 4: 
Overall symptom burden demonstrating the number of symptoms identified from 50 BioMe 

patients by A) NLP, B) ICD, and C) manual review
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Table 1:

Patient Characteristics of BioMe and MIMIC-III

BioMe Development (n=1034) MIMIC-III (n=519) BioMe Validation (n=46)

Age [years] 64 ±13.3 70±39.6 57±12.6

Female 433 (42) 212 (41) 18 (39)

Race/ethnicity:

African American 433(42) 97 (19) 17 (40)

European American 146(14) 329 (63) 4 (9)

East Asian 14(1.4) 18 (3) 1 (2)

Hispanic 376(36) 26 (5) 21 (46)

Missing 2(0.2) 20 (4) 0 (0)

Other 63(6) 29 (6) 3 (7)

Comorbidities:

Diabetes 671(65) 278 (54) 29 (63)

Hypertension 915(88) 473 (91) 44 (96)

Coronary artery disease 412(40) 241 (46) 14 (30)

Congestive heart failure 334(32) 243 (47) 13 (28)

Insurance Type:

Medicare 461 (45) 387 (75) 17 (40)

Medicaid 332 (32) 39 (8) 20 (46)

Private 215 (21) 84 (16) 5 (12)

Other/missing 26 (3) 9 (2) 1(9)

Note types [median (IQR)]:

Progress Notes 342 (102–782) 10 (0–55) 366 (234–486)

Discharge Summaries 16 (2–54) 1 (1–2) 1 (1–1)

Radiology 48 (14–105) 13 (4–33) 14.5 (6–28)

Pathology/Test Report 0 (0–1) 9 (4–20) 1 (1–3)

Mean follow up time [years] 8.7±5.5 N/A* 6.9±3.5

Data are shown as mean ± standard deviation or count (%) except where specified

*
As a majority of patients only had 1 encounter, follow up time was not calculated.
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